Optimization of photoluminescence of Y(2)O(3):Eu and Gd(2)O(3):Eu phosphors synthesized by thermolysis of 2,4-pentanedione complexes.

نویسندگان

  • B Antic
  • J Rogan
  • A Kremenovic
  • A S Nikolic
  • M Vucinic-Vasic
  • D K Bozanic
  • G F Goya
  • P H Colomban
چکیده

Spherical shaped nanoparticles of series Y(2 - x)Eu(x)O(3) (x = 0.06, 0.10, 0.20, and 2) and Gd(2 - x)Eu(x)O(3) (x = 0.06, 0.10) were prepared by thermolysis of 2,4-pentanedione complexes of Y, Gd, and Eu. The bixbyite phase of Gd(2 - x)Eu(x)O(3) samples was formed at 500 degrees C, whereas the thermal decomposition of Y and Eu complexes' mixtures occurred at higher temperatures. Linearity in the concentration dependence on lattice parameter confirmed the formation of solid solutions. The distribution of Eu(3+) in Gd(2 - x)Eu(x)O(3) was changed with thermal annealing: in the as-prepared sample (x = 0.10) the distribution was preferential at C(3i) sites while in the annealed samples, Eu(3+) were distributed at both C(2) and C(3i) sites. Rietveld refinement of site occupancies as well as emission spectra showed a random distribution of cations in Y(2 - x)Eu(x)O(3). The photoluminescence (PL) measurements of the sample showed red emission with the main peak at 614 nm ((5)D(0)-(7)F(2)). The PL intensity increased with increasing concentration of Eu(3+) in both series. Infrared excitation was required to obtain good Raman spectra. The linear dependence of the main Raman peak wavenumber offers a non-destructive method for monitoring the substitution level and its homogeneity at the micron scale.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of Gd3+ substitution on the crystal structure, site symmetry, and photoluminescence of Y/Eu layered rare-earth hydroxide (LRH) nanoplates.

Well crystallized nanoplates of the (Y(0.95-x)Gd(x)Eu(0.05))(2)(OH)(5)NO(3)·nH(2)O ternary layered rare-earth hydroxides (LRHs), synthesized hydrothermally, have been investigated with emphasis on the effects of Gd(3+) substitution for Y(3+) on the structural features and optical properties. Characterizations of the materials were achieved by the combined techniques of XRD, FT-IR, TEM, DTA/TG, ...

متن کامل

High Speed Preparation of GdCaAl3O7:Eu Nano-Phosphors by Microwave-Assisted Combustion Approach

GdCaAl3O7:Eu red nano-phosphors were synthesized by solution combustion using urea as fuel. Fourier-transform infrared, X-ray diffraction, scanning electron microscope, transmission electron microscope and photoluminescence spectrophotometer were used to characterize the obtained samples. XRD patterns revealed that GdCaAl3O7:Eu pure phase was formed by combustion of metal nitrate solution in th...

متن کامل

Photoluminescence properties of Al3GdB4O12:Eu phosphors

An investigation is reported of the photoluminescence (PL) properties of Al3GdB4O12:Eu phosphors. Under vacuum ultraviolet excitation, Al3GdB4O12:Eu exhibited a bright red luminescence with CIE chromaticity coordinates of (0.643, 0.356) with a PL intensity of 60% of the sodium salicylate standard. The PL spectrum showed a ground state splitting pattern consistent with D3 symmetry. The PL excita...

متن کامل

Luminescence tuning of imidazole-based lanthanide(III) complexes [Ln = Sm, Eu, Gd, Tb, Dy].

To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}a...

متن کامل

Recycling Y and Eu from Waste Fluorescent Powder and High Temperature Solid-State Synthesis of Y2O3:Eu Phosphors

Y2O3:Eu were prepared through precursors synthesized by leaching tests, removing impurities, enrichment of Y and Eu from residual purified liquors, annealing treatment, and high temperature solid-state reaction method, which is the most suitable for large-scale production. The analysis of product shows that the purity is 99.42%. The resultant powders were characterized by X-ray diffraction (XRD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanotechnology

دوره 21 24  شماره 

صفحات  -

تاریخ انتشار 2010